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About Me

Formal methods researcher and PhD student at TU Graz.

I am working on synthesis and am co-teaching a Masters course on
Verification and Testing.

Functional programming enthusiast.
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Software Correctness



What does it mean for software to be correct?

• It does what we want it to do.
• It does not crash.
• It matches examples we have in mind.
• It satisfies some properties.
• It conforms to an existing reference.
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How to check software is correct?

• Run it and compare outputs with our intuition.
• Write automatic tests.
• Explore exhaustively.
• Prove using mathematics.
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Where to get test inputs?

• What ever came to your mind first.
• Common use cases.
• Corner cases.
• Random data.
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Hypothesis Tutorial



Hypothesis

• Python library for property based testing.
• Generates random test inputs.
• Inspired by QuickCheck.
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Run Length Encoding

def encode(input_string):
count = 1
prev = ""
lst = []
for character in input_string:

if character != prev:
if prev:

entry = (prev, count)
lst.append(entry)

count = 1
prev = character

else:
count += 1

entry = (character, count)
lst.append(entry)
return lst
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Run Length Encoding

def decode(lst):
q = ""
for character, count in lst:

q += character * count
return q
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Unit Testing

def test_encode():
assert encode('1111566') == [(1,4),(5,1),(6,2)]

def test_decode():
assert decode([(1,4),(5,1),(6,2)]) == '1111566'
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A property test

from hypothesis import given
from hypothesis.strategies import text

@given(text())
def test_decode_inverts_encode(s):

assert decode(encode(s)) == s

Falsifying example: test_decode_inverts_encode(s='')

UnboundLocalError: local variable 'character'
referenced before assignment
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Bug fix

def encode(input_string):
if not input_string:

return []
...
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Adding examples

@given(text())
@example("")
def test_decode_inverts_encode(s):

assert decode(encode(s)) == s

11



Excluding ”forbidden” cases

@given(text())
def test_decode_inverts_encode(s):

assume(s != "")
assert decode(encode(s)) == s
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Another error

def encode(input_string):
if not input_string: return []
count = 1
prev = ""
lst = []
for character in input_string:

if character != prev:
if prev:

entry = (prev, count)
lst.append(entry)

# count = 1 # Missing reset operation
prev = character

else:
count += 1

entry = (character, count)
lst.append(entry)
return lst 13



Random Tests and Shrinking

@given(text())
@example("")
def test_decode_inverts_encode(s):

assert decode(encode(s)) == s

Falsifying example: test_decode_inverts_encode(s='001')

Note
The tester found the smallest failing input.
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More Property Based Testing



Strategies ...

• ... are used in a @given decorator.
• ... generate random inputs of a certain type.
• ... provide a way to shrink/minimize test cases.
• ... can be combined to build more complex strategies.
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Example Strategies

booleans()

integers(0,100)

text(printable)

emails()

dictonaries(keys=integers(), values=text())

lists(integers() | text() | booleans())
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Composite Strategies

@composite
def list_and_index(draw, elements=integers()):

xs = draw(lists(elements, min_size=1))
i = draw(integers(min_value=0,

max_value=len(xs) - 1))
return (xs, i)
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How To Find Properties

Generalized unit tests
Replace dummy data with randomly generated data.

Fuzzing
Does it crash?

Round trip properties
Serialize/deserialize, insert/extract, etc. must be compatible.

Models
Compare with a reference implementation.
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Stateful Testing

Most programs are not simple functions, they have state.

• Generate random sequences of interactions.
• Check for crashes, invariants and other properties.
• Possible interactions are described as a state machine.
• Can be applied to complex systems.
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A heap class

def heapnew():
...

def heapempty(heap):
...

def heappush(heap, value):
...

def heappop(heap):
...
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Testing a heap class

class HeapMachine(RuleBasedStateMachine):
def __init__(self):

super(HeapMachine, self).__init__()
self.heap = []

@rule(value=integers())
def push(self, value):

heappush(self.heap, value)

@rule()
@precondition(lambda self: self.heap)
def pop(self):

correct = min(self.heap)
result = heappop(self.heap)
assert correct == result
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A discovered bug:

E AssertionError: assert 0 == 1

binheap.py:90: AssertionError
----- Captured stdout call -----
Step #1: push(value=1)
Step #2: push(value=0)
Step #3: push(value=0)
Step #4: pop()
Step #5: pop()

Bug
The heap is not rebalanced after pop!

22



Extend your tests by sparkling in some randomness.

• Hypothesis is a python library for property based testing.
• Similar libraries are available for many languages (QuickCheck,
ScalaCheck, FsCheck)

• Try it on your own code: start with fuzzing or by generalizing
your unit tests.
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